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I.. INTRODUCTION

1. Overview of the Thésis
In this.thesi;, I discuss the metric-connection theories of

gravity.' Tﬁese theories generalize Einstein's theory beyond.the metric
theories by using some part of the connectiﬁn as an independent gravita-
tional variable in addition to the metric. Except while 1aying.the
mathematical background, I restrict my attention té.Cartan connections
:(which are métric~compatible but héve.arbitrary torsion).

A tybical‘metrié—connection theory is that based on the gravita-
tional Laérangian,
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wheré ﬁngé is the curvature of a Cartan connection. This theory is
studied in some detail in Chapter VI. In particular, I prove é Birkhoff
theorem. Other possible gravitatiomal Lagrangians are discussed in
Chapter V.

| Some experimental consequences of the metric-connection theories
are examined in Chapter IV. Specificallﬁ, in a metric and torsion back-
ground spacetime, I derive propagation equations for the momentum and
angular momentum of a body with bo;h orbital angular momentum and a net
elementary particle spin angular momentum. These equations show that.the
spin feels the torsion while the orbital angular momentum does not. For
fixed background metric and torsion fields, these results are independent
of the choice‘of gravitational Lagrangian since the propagation equations
follow from the conservation laws (rederived in Section III.5) which in
turn are derived via Noether's theorem from the transformation properties

of the matter Lagrangian under spacetime symmetrles,
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In Chaptef II, T argue that the metric-connection theories of gravity
may be regarded as the gauge theoriés of the spacetime symmetries. This
analogy is reinforced by the two tangent space formalism developed in
Chapter III.

Before giving a more detailed outline of the thesis and summarizing

the results (Section 3 of this Introducticn), it is useful to discuss

" (Section 2 below) the reasons for -investigating metric-connection theories,

their historical development, and their relationship to the metriec theories.

2, Metric-Connection Theories as Generalizations of the

Metric Theories

Since Einstein's theory agrees with all present experiments, I

wish to explain why I feel it is worthwhile to consider metric~connection

theories (or any other new theories of gravity). First and most obvious, .

if Einstein's theory is ever found to disagree with experiment, the new

theories would be ready.

Second, alternate theories may suggest new ways of testing gravity
thebries. In particular, in Section IV.4, I show that the metric-Cartan
connection theories, unlike Einstein's,predict that the propagation of
elementary particlé spin angular momentum is different from the propagation
of orbital angular momentum. Although the measurement of this difference
is bevond present capability (as shown in Section IV.5), it‘may be possible
at some future time when we are able to maneuver large masses ( 107 kg) in

space.
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Third, although Einstein's theory is amazing in its beauty and
simplicity, alternate theories may provide a more aesthetic unification

of the theory of gravif& with the theories of the weak, electromagnetic

-and strong interactions. In particular, as explained in Chapter II, I

feel that the metric-connection theories of gravity are in close analogy
with the gauge theories of eélementary particle interactions. The two

tangent space formalism, presented in Chapter IIT, makes this analogy

“even closer.

Finally;.alterﬁate theories may lead to a unification of. gravity
with quantum mechanics. At present neither Einstein's thebry nor any
other theory of gravity has been'quantized. This lack of a quantum theory
of gravity is the most blatant deficiency in the 1aw5'qf physics as under-
stood since fhe days of Einstein. I comsider the search for a quantum
theory of gravity to be the most important reason to investigate alternate
theories. With the notable exception of supergravity, to date most of the
attempts at quantizing gravity have been confined to the metric theories.
Since Yang-Mills fields are quantizable, the analogy between metrig—
connection theories and gauge theories lends hope that some metric—
connectionAtheory may prove dquantizsble.

-To be acceptable as a physical theory, any eventual quantum theory of
gravity must have a satisfactory classical limit. In fact since:it may
never be possible to measure the quantum mechanical properties of the
gravitational field, the existence of a satisfactory classical limit should
be a prerequisite to any attempt at quantization. Hence, in this thesis I
concentrate oﬁ the classical properties of the metric-connection theories

rather than their quantizability.
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Einstein's [1915] theory of gravity is the principal example of the
metric theories of gravitf. In these theories the gravitational field
is completely described by a metric, g, on spacetime., To be compatible
with both conventions on the signature of the metric, I let $ = *1 denote
the length of a unit timelike vector. From the metric one defines the
metric @eterminant, g; the Christoffel connection, {abc}; the Christoffel
Riemann curvature, ﬁabcd; the Christoffel Riceci curvature, ﬁbd; the
Christoffel scalar curvature, RK; and the Christoffel Einstein curvature,
de. _(See the Appendix on Notatiom for definitions.)

Before discussing other metric theories, I first review some

properties of Einstein's theory., Its field equations are
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where L = ( Gﬁ/c3 )% is the Planck length and Tab is the metric energy-
 momentum tensor which may be defined either phenomenologically or in

- terms of a matter Lagrangian, LM’ according to the formula
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where‘ﬁM = /:E LM' If there is a matter Lagrangian which is a scalar
and if the matter field equations are safisfied, then Noether's theorem

. ; ~ab .
implies that T2° satisfies the energy-momentum conservation laws:

v, 1P = 0, (3)
b . .
However, even if there is no matter Lagrangian so that ?ab'muét be

defined phenomenclogically, the conservation laws (3) are still satisfied

by virtue of the field equatioms (1) and the identity,

Vbéab =0 , (4)
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satisfied by the Christoffel Einstein tensor. Consequently, one says
that Einstein's theory has automatic Noetﬁer conservation laws., In fact
the existence of automatic conservation laws was one of the primary
rezsons why Einsfein chose his field eqﬁations in the first place.

"Many authors, beginning with Einstein [1917] and Eddington [1924],
have modified Einsteinis theory within the context of metric theories
while retaining its_automatic conservation 1awé. Thus they replace

Einstein's equations (1) by equations of the form
=T, ' (5)

~ab . . . . \ .
where E is some function of the metriec and its derivatives to some order

znd where Eab is required to satisfy an identity of the form
VbE = 0. . . _ (6)

The field equations (5), together with the idemtity (6), automatically
imply the conservation laws (3}.
For example, Einstein's [1917] theory with a cosmological comstant, A,

has the field equations

_ ﬁcz (aab - s A gab) - §ab. . (7)

8nL

Since the Christoffel connection is metric-compatible, the metric satisfies
V.g = 0. - (8)

“his identity and the identity (4), together with the.field equations (7)

imply the conservation laws (3).
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Tensors E  satisfying (6) are easy to construct. For any scalar,

LG(gab’ acgab’ Bd 8, b)’ (the grav1tat10nal Lagrangian} define E by
the formula
&L 9L oL Al
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where 4%~= VCE-LG. A proof similar to-that for Noether's theorem shows
that this Eab satisfies the identity (6). Hence, the theory with the
field equations (5) with ﬁab defined by (9), has automatic Noether con-
servation laws. | -
Examining the definitions (2) and (9) one sees that if there is both

a matter Lagrangian, LM’ and a gravitational Lagrangian, L then the field

G”

equations (5) can be derived from the variational principle
s [ +1) SEdn-o0 (10)
¢ ¥ In .

- In particular, the field equations (1) of Einstein's theory may be derived

_using Hilbert's [1915] gravitational Lagrangian:

L =-s§s —B¢_ & (11)

16ﬂL2
The field equations (7) of Einstein's theory with a cosmological constant

follow from the gravitational Lagrangian:

, ﬁcz R. (12)
8nL 16nL

This is the most general scalar which is a linear polynomial in the

Christoffel curvature.




Eddington [1924] considered the Lagrangians

- ~ab
L,= R, R, (13)

% Eabcd

LG abed : : (14)

Lanczosv[I938] (and Wefl [1919], but in a non-metric theory,) coénsidered

these Lagrangians and also

L, = RR . _ (15)

Any scalar which is quadratic in the Christoffel furvature must be a
linear combination ef Lagrangians'(IB), (14) and (15). However, Lanczos
showed that in constructing field equations only two of the three scalars

are required. This follows because the Euler—-Gauss-Bonnet integral,

cdmn ~ab gkl — 4

Jeabkls R g B B 4
_ o = xab | = ~abed, = .4
——4J(RR-4RabR +R, 4 R Y V-§ d x, (16)

is a topological invariant. Most authors have chosen to work with the

~

scalars ﬁab 8% and R R because they involve only the Ricei curvature and

so are easier to work with. Unfortunately, the field equations for these

quadratic curvature Lagrangians involve higher than second derivatives of

the metric.

Havas [1977] has shown that any field equations (5) in which ﬁab in-
volves higher than second derivatives of the metric leads to a theory
which either ﬁas a bad Newtonian 1imit or has extraneous spherically
symmetric solutions. At the same time Lovelock [1972] has demonstrated

ab | . . : .
that any tensor, E , involving no higher than second derivatives of the
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“which is both unitary and renormalizable. And third, the scalar B? R
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metric and satisfying (6), must be a linear combination of éab and gab.

Thus it appears that Einstein's theéry with a éosmological constant which
has the field equations (7) is the only acceptable metric theory of gravity.
On the other hand, there are reasons for including quadratic curva-
ture terms in the Lagrangian or including higher derivatives of the metric

in the field equations based on recent work on the problem of unifying

gravity with quantum mechanics. First, in renormalizing the energy-

-~

momentum tensor, TC , of a quantum matter field in a curved classicai
background spacetime, it is fpund that theré are countefterms added té the
Einstein equations (1) which involve third and fourth derivatives of the
metric. Second, while Einstein's theory with the Lagrangian (11) is

unitary but non-renormalizable, Stelle's [1977] theory with the Lagrangian,

s fic -

L,= - 7 R-aR, R+ BRE, ‘ (17)
167L '
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is renormalizable but non-unitary. One hopes to eventually find a theory

«b cd
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is analogous to the Yang-Mills Lagrangian F?cd FPCd. Since the Yang-Mills

theory is quantizable, there is hope that the use of this scalar as the

gravitational Lagrangian or as a term in the gravitational Lagrangian will
help in the quantization of gravity.

Can we find a way to include quadratic curvature terms in the Lagran-
gien which maintains the good classical behavior of Einstein's theory?

There is one way in which I fegi the above criteria for'choosing the
gravitational field equations ought to be weakened, In theApresence of
particles with spin, the definition of the energy-momentum tensor beccmes
ambiguous and the conservation law (3) may no longer be appropriate,

Instead of (3) one might use both the alternate energy~momentum
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conservation law,

a_1_.bdzxa
Vatc T2 5 a, R'bccl i (18)

2nd the angular momentum conservation law,

[
TeSha = Tha ™ Cap a9

a : . : . b e
where tb is the canonical energy-momentum tensor (asymmetric) and S

is the canonical spin tensor (antisymmetric in b and a). The tensors
a

tb and Sbac may be defined either phenomenologically or in terms of a

matter Lagrangian, LM’ according to the formulas

= a SJ%
TR ) s (¢ 3 @
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&
-sgasfe L . . (21)
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where £M = V- LM is regarded as an explicit function of the components

o

of an orthonormal l-form frame, 6% = ¢ a dxa, and the mixed components

of the Christoffel copnection, {ch} = BYC{G }.  (See the Appendix on

By
Notation.} The conservation laws (18) and (19) are only approﬁriate to the
metric theories. When there is a matter Lagrangian, they may be derived via
Noether's theorem. (The metric-connection theory generalizaﬁions of (18)
and (19) are derived in Section III.5.)

The metric energy-momentum tensor, Tab, may be expressed in terms of

tba and Sbac according to the Belinfante [1940] and Rosenfeld [1940]

symmetrization procedure:

Tab tab __% VC(Sabc + Scab + Scba)

c(ab)

= t(ab) - VCS . (22)
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The conservation law (3) is still true in the presence of spin but it
does not contain as much information as (18) and (19).

From the above discussion of the conservation laws satisfied by

tba, SbaC and %ab’ T wish to draw exactly the opposite conclusion as that
drawn by Belinfante. He says, "However, it cannot be expected that rolald

will represent the 'true' energy and momentum current and density. ... we
sheould fegard, in the present case, only that current-density tensor Tuv,
that generates the gravitafional field, as the true energy tensor." (Italics
are Belinfante's.)' Since %ab is the source in Einstein's equationms, -
Belinfante concludes that Eab is the true energy-momentum tensor. However,

~

. a . . R ab . :
since tb contains more information than T , I wish to regard tba as the
true energy-momentum tensor. Hence, I conclude that ome ought to modify
. . . ' a .
Einstein's equations so that t, is the source.

Thus one should look for a new set of gravitational field equations of

the form

BE*=1t?, - (23)
where Eba is a function of the metric and its derivatrives to some order.

Since tba should satisfy the conservation laws (18) and (19), it wquld be
wrong to assume that Eba is either divergence-free or symmetric. The former
and (18) would impose-a severe restriction on the curvature and spin. The
latter and (19) would imply éeparate congervation of spin and orbital

angular momentum.

The trouble with equation (23) is that there is now no way to derive

3

the conservation laws (18) and (19) for phenomenologically defined t a

b

be . .y : .
and S Q" Perhaps ome should introduce an additional set of gravitational

field equations of the form

Cb ¢ _ Sb c

. o (24)
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where C a is alsc a function of the metric and its derivatives to some

order. Then by requiring Eba and Cbac to satisfy ijdentities of the form

a _ i_ bd=a
VaEc 2 c a R bed (25)
ve ©= - E | (26)
'cba.Eba ab, )
the field equations (23) and (24) would automaticaily imply the con- .
‘servation laws (18) and (19).
By analogy with equation (22), one could define
g3 - g(ab) _ v cela®) (27)
Then equations (22), (27), (23) and (24) imply the equation,
S L : (28)
while the identities (25) and (26) iwply the identity;
~ab :
Vb = 0. 7 | (29)

Equation (28) with identity (29) coincides wiih therfield equations (5)
with identity (6). However, (28) does not contain as much information as
both of equatiomns (23) and (24).

As before, it is easy to construct tensors Eba and CbaC satisfying

(25) and (26). For any scalar gravitational Lagfangian,

o
RN

define Eba and cbac by the formulas
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64% R 34% )
s /=5 E2 = = - , (30)
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where £G = V-3 L

~ A proof similar to that for Noether's theorem again

- shows that this E 2 and Cbac satisfy the identities (25) and (26). Hence,

b

the theory with the field quations‘(ZB) and (24) with Eba and Cbac
defined by (30)‘and (31) has automatic Noether censervation laws (18) and
(19).

Unfortunately, there is still a problem with equations (23) and (24).
In orﬁér to attempt a path-integral quantization of gravity, it is necessary
to have an action functional from which the field equatibns can be derived
by a variational principal. Equations (23) and (24) cannot be derived
from a variational frinciple (at least not straightforwardly}. To see this,r
éuppose there is both a matéer Lagrangian, LM’ and a gravitational

Lagrangian, L.. An examination of definition (20), (21}, (30) and (31)

G

naively appears to say that the field equations (23) and (24) can be de-

rived from the variational principle,
= 4 g
aj (LG+LM)/:g'dx-o, | (32)

br varying Gaa and {ch} independently. This is essentially a "FPalatini'[1919}

variation. The problem is that Baa aﬁd {ch} cannot be wvaried independently

. a ) . o . . . .
since { Bc} can be expressed in terms of 0 A and its derivatives according
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to the formulas

), (33)

e, meg e (3 8 -3 6% ). (34)

When this interdependence is taken into account, the variational
principle (32) leads to only the field equation (28) which is implied by
equations (23) and (24) but does not contain as much information.

Thus equations (23) and (24) can be used as a priori field equationms,
but they cannot easily be derived from an action principle. Can one find

. . . . a b c
an action for which the field equations have both t and S 4 @&t sources

b
and have automatic conservation laws? Yes, if one drops the restriction
to metric theories and makes the comnection independent.

By a2 metric-connection theory of gravity, T mean a theory in which
the gravitational field is completely deséribed by a metric and a connéc—

tion which may be non-metric—compatible and may have torsion. Thus the

covariant derivative of the metric

- 8 §
VyBag T SyBap T T oy Bsg T T gy Bas (35
and/or the torsion
a o o o
=T - -
Q By YB T By © gy ° (36)

may be non-zero. Although all metric theories (which use the Christoffel
connection) are metric-connection theories, I am mainly concerned with

those theories in which the connection cannot be completely specified in

terms of the metric. The principal examples of the metric-connection theories

are Cartan's [1922, 23, 24, 25] theory and Weyl's [1919, 21] theory.
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3. Outline of the thesis

In the first,third of the thesis (Chapters II and I11),
I concentrate on the kiﬁemaﬁics of a metric-connection gravifational
field. I first discuss the analogy betweén the gauge theofies of elemen-
tary par;iclé_interactions (Sectiop IT1.1) and the metric-commection

theories of gravity (Sectionm II.2). Then I discuss the possible space-

time symmetry groups (Section II.3) and correlate each of these with a

class of "admissible™ frames (Section IT.3) and with a set of restric-

tions on the connection (Section IILA). See Tables II.1 through II.5.
For example, for the groups 0(3,1,R) and SL{(2,C), the admissible tangent
frames are orthonormal, the admissible spinor frames are orthonormal,
and the connection is a Cartan connection. Similariy, the group,
GL(4,R) admits arbitrary tangent frames ;nd allows a general connection
but is incompatible with spinors. On the other hénd, the group,
GL(2,C), admits arbitrary.spinof frames, requi:es conformal orthonormal
tangént frames, and unifies the électromagnetic potential with a Weyl-
Cartan connection.

In Seétion II.4, I also define the mixed components of the connec-
tien, Pasé; and use the gauge theory analogy to justify choosing the

' o

components of the admissible 1-form frame, 0% = g a dxa, the frame

components of the metrie, gaB’ and the mixed components of the connection

Faga, as the best variables for describing the gravitational field.

In Chapter III, I introduce mixed covariant derivatives such as

vieP=ae PP Py e ,
a é ag aa B ca o

where some indices (those with a caret, " ) are corrected with the full

connection, while other indices (those with a tilde, ™ ) are corrected
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with the Christoffel connection. These mixed covariant derivatives appear
in many of the equations of the metric- coﬁnection theories, and it is

not immediateiy obvious why some indices are corrected with full connec-
tions and other indices are.corrected with Christoffel connections. I

develop a two tangent space formalism (Section III1.2) to give a geometric

explanation for the presence of two connections and two types of indices.

The Christoffel comnection acts on one of the tangent spaces (called the
external tangent space) where I usually use coordinate indices. The full
connection acts on the other tangent space (called the internal tangent
space) where I usually use orthonormal indices.

As discussed in Section III.4, all differentiating directions belong
to the external tangenﬁ space, This implies that the differentiating

indices on all connections, curvatures, gauge potentials, and gauge

- fields are external indices. All other tangent indices are standardly

taken as internal tangent indices. 1In particular, all matter fields

_except gauge fields are standardly internal tangent tensors.

There' is an isomorphism (cglléd the soldering isomorphism) between
the two tangent spacés (Section IIL.2). Its covariant derivative turns
out.to be the defect tensor which is the difference between the fuli
connection and the Christoffel connection. The soldering isomorphism
and its covariant derivative turn out to be useful tools in computation.

In Section I1I.3, I compare the two tangent space formalism with
the usual one tangent space formalism. In particular, the soldering
iéomorphism and the external orthonormal frame both correspond to ;he
orthonormal frame when there is only one tangent space. I éasily

generalize the Cartan differential form notation from one to two tangent

spaces., The form indices belong to the external tangent form bundles,
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Around the middle third of the thesis (Chapter IV and parts of

Chapters IT and ITI), I concentrate on the kinematics and dynamics of

zatter fields in.a metric—connection spacetime. In Section I1I.3, I

review the transformation properties of various fields under coordinate,

tangent:frame,.and spinor frame transformations (Tables II.6 through
II.ll), aﬁd in Section III.@, I diécﬁss minimal coupling of the.matter
fields to the gravitational field.

As an example qf a computation using the two tangent space for-
mziism, I rederive (Section III1.5) the cqnservétion laws of energy-
mementum and angular momentum by applying Noetheé‘s theorem to coor-
dinate and 0(3,1,Ri—frame invariance. Considering'GL(&,R)—frame in-
variance, I also obtain conservation laws for hyperﬁbmentum and dilation
current.

Ffom the conservation laws of energy-momentum and angular momentum,
William Stoeger and . I have derived (Sections IV.2 and IV.3) propagation
equations for the integrated energy-momentum and integrated angular
momentum of a body with both orbital angular momentum and elementary
pgrticle spin angular momentum, moving in a metric-Cartan connection space-
time. Thesé propagation equations show (Section IV.4) that the torsion
couples to the spin éngular momentum but not to the orbital angular momentum.
However, experiments (Section IV.5)} to measure the effect of the torsion on
the spin are beyond present technology.

The method of deriving the propagation equations is similar to that
used by Papapetrou [1951] and Dixon [1970a,b; 1974] in the context of metric
theories. However, they did not regard the spin and orbital angular
momentum as separate quantities. As a special case of our propagation
ecuztions, we show (Section IV.4, Corollary IV.7) that in a.metric theory,

szin and orbital angular momentum propagate in the same way.
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To summarize my treatﬁent of the behavior of matter in metric-Cartan
connectipn spacetimes, there is a progression ffom the transformation pro-
perties of fields under spacetime symmetries (Section II1.3 and III.4), to
the differential conservation laws of energy-momentum and angular momentum
(Section IIT.5), to the propagation equations for the integrated energy-
momentum and angular momentum (Sectioms IV.1 through IV.4), and to
.conceivable experiments to detect the torsion (Section IV.35).

In the final third of the thesis (Chapters V and VI) I discuss the
dynamics of the gravitational field, i.e. the choice of gravitational
Lagrangian or gravitational field equatioms. A viable theory of gravity
must agree with Newtonian experiments, post-Newtonian solar system ex-
periments and cosmological observations (Section V.2). It should also
have a good initial value formulation, have automatic Noether conservation
laws and uitimately be quantizable (Section V.3).

Skinner and Gregorash [1976] and Aldersley [1977 a,b] have studied
- .the class of metric-Cartan connection theories in which the field equations
contain mo higher than second derivatives of the metric and torsion. I
obtain (Section V.3b) a different class of metric-Cartan connection theories
by requiring the field equations fo contain no higher than second deriva-
tives of the components of the orthonormal l-form frame, Bué, and the mixed

. o . : "
components of the Cartan connection, T This class containg all theories

Ba”

derived from a gravitational Lagrangian of the form

L.=aR+L (g _, R

X
G o8 By§? Q Yﬁ)’

H

where R is the scalar curvature of the Christoffel conmection, o is an
arbitrary constant, and L is an arbitrary scalar function of the metrie,

Ay o
i TV T R sion .
gQB’ the Cartan cg ature, By s and the tor ,» Q 6
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This type of Lagrangian describes a large class of theories. T show
(Sectien V.3e¢) that all of them have automatic Noether conservation laws.
Then I show (Section V.3d) that any such Lagrangian which is a quadratie

"polynomial in ﬁqsyﬁ and Qay5, must belong to the twelve parameter family

fic fic
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Finally (Chapter VI) I restrict my attention to the gravitational

Lagrangian

e ~  fc A ~aByd

L.=~-358 R+ - R s
16wL2 16waG aByd

G

where RQBTﬁ is the Cartan curvature. In Section VI.2, I rederive the
automatic. Noether conservation laws and point out that for this theory

the frame, Gaa, acts as a Lagrange multiplier. Sriram Ramaswamy and T

have proven (Section VI.3) a Birkhoff theorem which says that the unique -

0(3)-spherically symmetric vacuum solution of this theory is the

Schwarzschild metriec and zero torsion.




